Prove that with all real numbers a, b, c, we have: \(6abc+2\sqrt{\prod\left(a^2-ab+b^2\right)}\ge\prod\left(a+b\right)\)
Prove that with all real numbers a, b, c, we have:
\(6abc+2\sqrt{\prod\left(a^2-ab+b^2\right)}\ge\prod\left(a+b\right)\)