-
Huy Toàn 8A (TL) 21/05/2018 at 02:06
B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
We have:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
=>B = \(\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Nguyễn Thị Linh selected this answer. -
Nguyễn Thành Long 26/05/2018 at 08:34
Ta có :
\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)
\(4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\)
\(4B=\left[1.2.3.4+2.3.4.5+...+n.\left(n+1\right).\left(n+2\right)\right]\)\(-\left[1.2.3.4+2.3.4.5+...+\left(n-1\right).n.\left(n+1\right)\right]\)
\(4B=n.\left(n+1\right).\left(n+2\right)\)
\(B=\dfrac{n.\left(n+1\right).\left(n+2\right)}{4}\)