MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nguyễn Thị Linh

21/05/2018 at 02:01
Answers
2
Follow

 B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

B=?




    List of answers
  • ...
    Huy Toàn 8A (TL) 21/05/2018 at 02:06

    B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

    We have:

    4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

    = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

    = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

    =>B = \(\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

    Nguyễn Thị Linh selected this answer.
  • ...
    Nguyễn Thành Long 26/05/2018 at 08:34

    Ta có :           

    \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

    \(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)

    \(4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)

    \(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\)

    \(4B=\left[1.2.3.4+2.3.4.5+...+n.\left(n+1\right).\left(n+2\right)\right]\)\(-\left[1.2.3.4+2.3.4.5+...+\left(n-1\right).n.\left(n+1\right)\right]\)

    \(4B=n.\left(n+1\right).\left(n+2\right)\)

    \(B=\dfrac{n.\left(n+1\right).\left(n+2\right)}{4}\)


Post your answer

Please help Nguyễn Thị Linh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM