Lê Quốc Trần Anh Coordinator
20/05/2018 at 10:37-
Suppose: n2 + n + 2 ⋮15
=> n(n+1) + 2 ⋮ 15
But n(n+1) ⋮ 2 => n(n+1) + 2 is an even number
=> n(n+1) + 2 has last digit is 0
=> n(n+1) has last digit is 8
But the last digit of product of two consecutive integers is 0,2,6
So n(n+1) + 2 \(⋮̸15\)
So n(n+1) + 2 \(⋮̸3\)
=> n(n+1) + 2 - 3 = n2 + n - 1 \(⋮̸3\)
=> \(\left(n^2+n-1\right)^2\equiv1\left(mod3\right)\Rightarrow\left(n^2+n-1\right)^2-1⋮3\)
\(\left(n^2+n-1\right)^2-1=\left(n^2+n-2\right)\left(n^2+n\right)\)is the profuct of two consecutive even number so has the form 2k.(2k+2) = 4k2 + 4k = 4k(k+1) \(⋮8\)
\(\left(3,8\right)=1\Rightarrow\left(n^2+n-1\right)^2-1⋮24\)
Lê Quốc Trần Anh selected this answer. -
FC Alan Walker 20/05/2018 at 13:43
We have: \(\left(n^2+n-1\right)^2-1=\left(n^2+n\right)\left(n^2+n-2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\left(n\in Z\right)\) (product of four consecutive numbers)
So ...