MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

20/05/2018 at 10:37
Answers
2
Follow

Prove that: \(\left(n^2+n-1\right)^2-1⋮24\left(\forall n\in Z\right)\)




    List of answers
  • ...
    Dao Trong Luan Coordinator 20/05/2018 at 12:23

    Suppose: n2 + n + 2 ⋮15

    => n(n+1) + 2 ⋮ 15 

    But n(n+1) ⋮ 2 => n(n+1) + 2 is an even number

    => n(n+1) + 2 has last digit is 0

    => n(n+1) has last digit is 8

    But the last digit of product of two consecutive integers is 0,2,6 

    So n(n+1) + 2 \(⋮̸15\)

    So n(n+1) + 2 \(⋮̸3\)

    => n(n+1) + 2 - 3 = n2 + n - 1 \(⋮̸3\)

     => \(\left(n^2+n-1\right)^2\equiv1\left(mod3\right)\Rightarrow\left(n^2+n-1\right)^2-1⋮3\)

    \(\left(n^2+n-1\right)^2-1=\left(n^2+n-2\right)\left(n^2+n\right)\)is the profuct of two consecutive even number so has the form 2k.(2k+2) = 4k2 + 4k = 4k(k+1) \(⋮8\)

    \(\left(3,8\right)=1\Rightarrow\left(n^2+n-1\right)^2-1⋮24\) 

    Lê Quốc Trần Anh selected this answer.
  • ...
    FC Alan Walker 20/05/2018 at 13:43

    We have: \(\left(n^2+n-1\right)^2-1=\left(n^2+n\right)\left(n^2+n-2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\left(n\in Z\right)\)                                                                                                                         (product of four consecutive numbers)

    So ...


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM