MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

17/05/2018 at 12:27
Answers
2
Follow

Prove that: \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\) with a,b,c > 0




    List of answers
  • ...
    Dao Trong Luan Coordinator 17/05/2018 at 13:19

    \(8(a^3 + b^3+c^3)\ge (a+b)^3 + (b+c)^3 + (c+a)^3 \)

    \(\Leftrightarrow 8(a^3 +b^3+c^3) \ge 2(a^3+b^3+c^3) + 3ab(a+b) + 3bc(b+c)+3ca(c+a) \)

    \(\Leftrightarrow\)\(6(a^3 +b^3+c^3) \ge 3[ab(a+b) + bc(b+c) + ca(c+a)] \)

    \(\Leftrightarrow\) \(2a^3+2b^3+2c^3 \ge ab(a+b) + bc(b+c) + ca(c+a) \)

    We have: a3 + b3 \(\ge \) a2b + ab2

    Prove that the same way as the way of Kaya Renger to prove that: \(a^4+b^4 \ge a^3b+ab^3\)

    So \(\left\{{}\begin{matrix}a^3+b^3\ge ab\left(a+b\right)\\b^3+c^3\ge bc\left(b+c\right)\\c^3+a^3\ge ca\left(c+a\right)\end{matrix}\right.\)

    So true. 

    => \(8(a^3 + b^3+c^3)\ge (a+b)^3 + (b+c)^3 + (c+a)^3 \)

    Lê Quốc Trần Anh selected this answer.
  • ...
    Fc Alan Walker 18/05/2018 at 13:34

    8(a3+b3+c3)≥(a+b)3+(b+c)3+(c+a)3

    ⇔8(a3+b3+c3)≥2(a3+b3+c3)+3ab(a+b)+3bc(b+c)+3ca(c+a)

    ⇔

    6(a3+b3+c3)≥3[ab(a+b)+bc(b+c)+ca(c+a)]

    ⇔

     2a3+2b3+2c3≥ab(a+b)+bc(b+c)+ca(c+a)

    We have: a3 + b3 ≥

     a2b + ab2

    Prove that the same way as the way of Kaya Renger to prove that: a4+b4≥a3b+ab3

    So ⎧⎩⎨⎪⎪a3+b3≥ab(a+b)b3+c3≥bc(b+c)c3+a3≥ca(c+a)

    So true. 

    => 8(a3+b3+c3)≥(a+b)3+(b+c)3+(c+a)3


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM