MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

17/05/2018 at 12:25
Answers
3
Follow

Given a + b + c = 0. Prove that: \(ab+bc+ca\le0\)




    List of answers
  • ...
    Dao Trong Luan Coordinator 17/05/2018 at 12:45

    a+b+c = 0

    => (a+b+c)2 = 0

    => a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

    We have: a2 + b2 + c2 \(\ge0\)

    \(\Rightarrow2\left(ab+bc+ca\right)\le0\Leftrightarrow ab+bc+ca\le0\)

    Lê Quốc Trần Anh selected this answer.
  • ...
    Huy Toàn 8A (TL) 19/05/2018 at 02:02

    a + b + c = 0

    => (a + b + c)2   \(>_-\)0

    <=> a2 + b2 + c2 + 2ab + 2cb + 2ac = 0

    => 2 (ab + bc + ca)   \(< _-\) 0

    Compact : ab + bc + ca \(< _-0\)
  • ...
    Fc Alan Walker 18/05/2018 at 13:35

    a+b+c = 0

    => (a+b+c)2 = 0

    => a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

    We have: a2 + b2 + c2 ≥0

    ⇒2(ab+bc+ca)≤0⇔ab+bc+ca≤0


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM