MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

17/05/2018 at 12:24
Answers
3
Follow

Prove that: \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)




    List of answers
  • ...
    Dao Trong Luan Coordinator 18/05/2018 at 00:07

    We have:

    \(a^2 +b^2+c^2\ge ab+bc+ca\)

    Prove that it: 

    This inequality <=> \(2a^2+2b^2+2c^2 \ge 2ab+2bc+2ca \)

    <=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

    <=> \((a-b)^2 + (b-c)^2 + (c-a)^2 \ge 0 \) (true) 

    So a2 + b2 + c2 \(\ge\) ab + bc + ca

    Apply this for the topic, we have:

    \(a^4+b^4+c^4 \ge (ab)^2 + (bc)^2 + (ca)^2 \)

    \((ab)^2 + (bc)^2 + (ca)^2 \ge ab^2c + a^2bc + abc^2 = abc(a+b+c) \)

    Lê Quốc Trần Anh selected this answer.
  • ...
    Fc Alan Walker 18/05/2018 at 13:35

    We have:

    a2+b2+c2≥ab+bc+ca

    Prove that it: 

    This inequality <=> 2a2+2b2+2c2≥2ab+2bc+2ca

    <=> 2a2+2b2+2c2−2ab−2bc−2ca≥0

    <=> (a−b)2+(b−c)2+(c−a)2≥0

     (true) 

    So a2 + b2 + c2 ≥

     ab + bc + ca

    Apply this for the topic, we have:

    a4+b4+c4≥(ab)2+(bc)2+(ca)2

    (ab)2+(bc)2+(ca)2≥ab2c+a2bc+abc2=abc(a+b+c)

    So a4+b4+c4≥abc(a+b+c)

  • ...
    Dao Trong Luan Coordinator 18/05/2018 at 00:07

    So \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM