Dao Trong Luan Coordinator
17/05/2018 at 05:27-
We have: \(a^2+b^2+c^2\ge ab+bc+ca\)
[\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+ca\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2\)
\(\ge0\) (proved)]
=> \(a^2+b^2+c^2+2ab+2bc+2ca\ge ab+bc+ca\)
=> \(\left(a+b+c\right)^2\ge3\left(ab+ac+ca\right)\)
=> \(\left(a+b+c\right)^3\ge3\left(ab+ac+ca\right)\) (proved)
-
Fc Alan Walker 18/05/2018 at 13:37
We have: a2+b2+c2≥ab+bc+ca
[a2+b2+c2≥ab+bc+ca⇔2(a2+b2+c2)≥2(ab+ac+ca)⇔(a−b)2+(b−c)2
≥0
(proved)]
=> a2+b2+c2+2ab+2bc+2ca≥ab+bc+ca
=> (a+b+c)2≥3(ab+ac+ca)
=> (a+b+c)3≥3(ab+ac+ca)
(proved)