MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

17/05/2018 at 05:27
Answers
2
Follow

Given: \(a,b\in Z\)

Prove that: \(\left(a+b+c\right)^3\ge3\left(ab+bc+ca\right)\)

 




    List of answers
  • ...
    Lê Quốc Trần Anh Coordinator 18/05/2018 at 12:40

    We have: \(a^2+b^2+c^2\ge ab+bc+ca\)

    [\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+ca\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2\)

    \(\ge0\) (proved)]

    => \(a^2+b^2+c^2+2ab+2bc+2ca\ge ab+bc+ca\)

    => \(\left(a+b+c\right)^2\ge3\left(ab+ac+ca\right)\)

    => \(\left(a+b+c\right)^3\ge3\left(ab+ac+ca\right)\) (proved)

  • ...
    Fc Alan Walker 18/05/2018 at 13:37

    We have: a2+b2+c2≥ab+bc+ca

    [a2+b2+c2≥ab+bc+ca⇔2(a2+b2+c2)≥2(ab+ac+ca)⇔(a−b)2+(b−c)2

    ≥0

     (proved)]

    => a2+b2+c2+2ab+2bc+2ca≥ab+bc+ca

    => (a+b+c)2≥3(ab+ac+ca)

    => (a+b+c)3≥3(ab+ac+ca)

     (proved)


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM