MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

16/05/2018 at 11:35
Answers
3
Follow

Given a,b,c > 0. Prove that: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)




    List of answers
  • ...
    Dao Trong Luan Coordinator 16/05/2018 at 12:03

    \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

    \(\Leftrightarrow2\left(a^2+b^2+c^2+2abc+1\right)\ge2\left(ab+bc+ca\right)\)

    \(\Leftrightarrow2a^2+2b^2+2c^2+4abc+2\ge2ab+2bc+2ca\)

    \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge-4abc-2\)

    \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge-\left(abc+2\right)\) (True because -(abc+2) \(\le0\) because a,b,c > 0) 

    So .................

    Lê Quốc Trần Anh selected this answer.
  • ...
    Anhhangxom6969 03/06/2018 at 15:18

    By Am-Gm inequality: \(abc+abc+1\ge3\sqrt[3]{a^2b^2c^2}=\dfrac{3abc}{\sqrt[3]{abc}}\ge\dfrac{9abc}{a+b+c}\)

    So we need to prove : \(a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\ge2\left(ab+bc+ca\right)\)

    \(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)( schur level 3 inequality ) ( proved)

    Equality occurs for a=b=c=1 

    c2 : Diriclet theorem \(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\) ( we can assume that)\(\Rightarrow c\left(a-1\right)\left(b-1\right)\ge0\)

    \(\Leftrightarrow abc\ge ac+bc-c\) . So we need to prove 

    \(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)

    \(\Leftrightarrow\left(a-b\right)^2+\left(c-1\right)^2\ge0\) (true)  

  • ...
    Dao Trong Luan Coordinator 16/05/2018 at 12:57

    Oh, sorry, the last row must be \(\ge-\left(2abc+2\right)\) not \(\ge-\left(abc+2\right)\)


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM