MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nine

11/05/2018 at 06:47
Answers
1
Follow

Show that :  A is a square number \(\forall n\in N\) , know :

\(A=1^3+2^3+...+n^3\)  




    List of answers
  • ...
    Alone 11/05/2018 at 10:26

    To try on: n=1 then \(A=1^3=1;\dfrac{1^2\left(1+1\right)^2}{4}=\dfrac{4}{4}=1\)

    Suppose A be true for n = k; that is:

     \(1^3+2^3+......+k^3=\dfrac{k^2\left(k+1\right)^2}{4}\)

    We shall show that A is true too

    Add \(\left(k+1\right)^3\),we have:

     \(1^3+2^3+........+k^3+\left(k+1\right)^3\)=\(\dfrac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3=\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}\)

    \(=\dfrac{\left(k+1\right)^2.\left(k^2+4k+4\right)}{4}=\dfrac{\left(k+1\right)^2.\left(k+2\right)^2}{4}\)

    So the supposition right


Post your answer

Please help Nine to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM