Lê Quốc Trần Anh Coordinator
07/05/2018 at 11:41-
Multiplying each side with 2, we have:
2xy + 2yz + 2zx ≤ 2x2 + 2y2 + 2z2
<=> 2xy + 2yz + 2zx - 2x2 - 2y2 - 2z2 ≤ 0
<=> 2xy + 2yz + 2zx - x2 - x2 - y2 - y2 - z2 - z2 ≤ 0
<=> -(x2 - 2xy + y2) - (x2 - 2xz + z2) - (y2 + 2yz + z2) ≤ 0
<=> -(x+y)2 - (x+z)2 - (y+z)2 ≤ 0 (True)
So xy + yz + zx ≤ x2 + y2 + z2
Lê Quốc Trần Anh selected this answer.