MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

06/05/2018 at 13:42
Answers
1
Follow

Prove that the $\sqrt{2}$ cannot be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are rational.




    List of answers
  • ...
    Alone 06/05/2018 at 17:07

    Suppose \(\sqrt{2}\) can be expressed in the form \(\dfrac{m}{n}\) with (m,n)=1

    \(\Rightarrow\dfrac{m}{n}=\sqrt{2}\Rightarrow\dfrac{m^2}{n^2}=2\)\(\Rightarrow m^2=2n^2\)

    Because \(2n^2⋮2\) so \(m^2⋮2\Rightarrow m⋮2\)(1)

    \(\Rightarrow m^2⋮4\)\(\Rightarrow n^2⋮2\Rightarrow n⋮2\)(2)

    From (1) and (2),we have the assumption is wrong

    So \(\sqrt{2}\) can be expressed in the form \(\dfrac{m}{n}\)

    Lê Quốc Trần Anh selected this answer.

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM