MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Anh Duy

15/04/2018 at 12:12
Answers
3
Follow

10) It is given that:

\(\sqrt{1+1\times2\times3\times4}=5\)

\(\sqrt{1+2\times3\times4\times5}=11\)

\(\sqrt{1+3\times4\times5\times6}=19\)

\(\sqrt{1+4\times5\times6\times7}=29\)

Find \(\sqrt{1+204\times205\times206\times207}\)

P/s: There are 4+solutions for this question

       Two solutions worth 1 point 




    List of answers
  • ...
    Lê Quốc Trần Anh Coordinator 16/04/2018 at 11:45

    (Solution 1)We have: \(\sqrt{1+1\cdot2\cdot3\cdot4}=1+1\cdot4=5\)

    \(\sqrt{1+2\cdot3\cdot4\cdot5}=1+2\cdot5=11\)

    .........

    \(\sqrt{1+204\cdot205\cdot206\cdot207}=1+204\cdot207=42229\)

    (Solution 2) We have: \(\sqrt{1+1\cdot2\cdot3\cdot4}=2\cdot3-1=5\)

    \(\sqrt{1+2\cdot3\cdot4\cdot5}=3\cdot4-1=11\)

    ..............

    \(\sqrt{1+204\cdot205\cdot206\cdot207}=205\cdot206-1=42229\)

    Alone has done solutions 3+4.

    Lê Anh Duy selected this answer.
  • ...
    ¤« 16/04/2018 at 13:56

    (Solution 1)We have: 1+1⋅2⋅3⋅4−−−−−−−−−−−√=1+1⋅4=5

    1+2⋅3⋅4⋅5−−−−−−−−−−−√=1+2⋅5=11

    .........

    1+204⋅205⋅206⋅207−−−−−−−−−−−−−−−−−−√=1+204⋅207=42229

    (Solution 2) We have: 1+1⋅2⋅3⋅4−−−−−−−−−−−√=2⋅3−1=5

    1+2⋅3⋅4⋅5−−−−−−−−−−−√=3⋅4−1=11

    ..............

    1+204⋅205⋅206⋅207−−−−−−−−−−−−−−−−−−√=205⋅206−1=42229

    Alone has done solutions 3+4.

    Solution 1:1+204.205.206.207−−−−−−−−−−−−−−−−√=1783288441−−−−−−−−−√=42229

    Solution 2:1+n(n+1)(n+2)(n+3)−−−−−−−−−−−−−−−−−−−−−−√=1+(n2+3n)(n2+3n+2)−−−−−−−−−−−−−−−−−−−−−−√=(n2+3n)2+2.(n2+3n)+1−−−−−−−−−−−−−−−−−−−−−−−√

    =(n2+3n+1)2−−−−−−−−−−−−√=n2+3n+1

    With n=204 then 1+204.205.206.207−−−−−−−−−−−−−−−−√=2042+3.204+1=42229

  • ...
    Alone 16/04/2018 at 06:42

    Solution 1:\(\sqrt{1+204.205.206.207}=\sqrt{1783288441}=42229\)

    Solution 2:\(\sqrt{1+n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\sqrt{1+\left(n^2+3n\right)\left(n^2+3n+2\right)}=\sqrt{\left(n^2+3n\right)^2+2.\left(n^2+3n\right)+1}\)

    \(=\sqrt{\left(n^2+3n+1\right)^2}=n^2+3n+1\)

    With n=204 then \(\sqrt{1+204.205.206.207}=204^2+3.204+1=42229\)


Post your answer

Please help Lê Anh Duy to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM