MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Anh Duy

15/04/2018 at 11:51
Answers
3
Follow

7) The area of rectangle ABCD is 24 cm2. The area of triangles ABE and ADE are 4 cm2 and 9 cm2 respectively. Find the area of the triangle AEF A B E F C 4 cm D 9 cm 2 2 ?




    List of answers
  • ...
    ¤« 16/04/2018 at 14:03

    We have:

    CD.DA = 24; FD⋅DA2=9⇒FD⋅DA=18

    => FDCD=1824=34⇒FC=14CD

    AB⋅BE2=4⇒AB⋅BE=8

    ⇒BEBC=824=13⇒EC=23BC

    ⇒SΔEFC=14CD⋅23BC2=16.242=42=2(cm2)

    ⇒SΔAEF=24−9−4−2=13(cm2)

  • ...
    Dao Trong Luan Coordinator 15/04/2018 at 12:44

    We have:

    CD.DA = 24; \(\dfrac{FD\cdot DA}{2}=9\Rightarrow FD\cdot DA=18\)

    => \(\dfrac{FD}{CD}=\dfrac{18}{24}=\dfrac{3}{4}\Rightarrow FC=\dfrac{1}{4}CD\)

    \(\dfrac{AB\cdot BE}{2}=4\Rightarrow AB\cdot BE=8\)

    \(\Rightarrow\dfrac{BE}{BC}=\dfrac{8}{24}=\dfrac{1}{3}\Rightarrow EC=\dfrac{2}{3}BC\)

    \(\Rightarrow S_{\Delta EFC}=\dfrac{\dfrac{1}{4}CD\cdot\dfrac{2}{3}BC}{2}=\dfrac{\dfrac{1}{6}.24}{2}=\dfrac{4}{2}=2\left(cm^2\right)\)

    \(\Rightarrow S_{\Delta AEF}=24-9-4-2=13\left(cm^2\right)\)

  • ...
    Lê Anh Duy 15/04/2018 at 15:14

    Hey! Correct explanation but you calculate incorrectly. Try again!


Post your answer

Please help Lê Anh Duy to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM