MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

FC Alan Walker

08/04/2018 at 03:46
Answers
0
Follow

Prove that:

  1. \(2\dfrac{5}{9}< \dfrac{5}{3}+\dfrac{8}{3^2}+\dfrac{11}{3^3}+...+\dfrac{302}{3^{100}}< 3\dfrac{1}{2}\)

  2. \(3\dfrac{7}{9}< \dfrac{7}{3}+\dfrac{13}{3^2}+\dfrac{19}{3^3}+...+\dfrac{601}{3^{100}}< 5\)

  3. \(\dfrac{11}{3}+\dfrac{17}{3^2}+\dfrac{23}{3^3}+...+\dfrac{605}{3^{100}}< 7\)

  4. \(\dfrac{4}{3}+\dfrac{13}{3^2}+\dfrac{22}{3^3}+...+\dfrac{904}{3^{101}}< \dfrac{17}{4}\)

  5. \(\dfrac{7}{3}+\dfrac{11}{3^2}+\dfrac{15}{3^3}+...+\dfrac{403}{3^{100}}< 4,5\)

Quickly, please. :v





Post your answer

This question has not resolved yet, If you knew the solution, please help FC Alan Walker .



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM