MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Alone

07/04/2018 at 13:55
Answers
2
Follow

Prove that P\(=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.......+\dfrac{1}{2013^2}\) isn't a integer




    List of answers
  • ...
    FC Alan Walker 08/04/2018 at 03:28

    We can easily prove that P>0.

    We have: \(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}\)

                                                                     \(=1-\dfrac{1}{2013}< 1\)

    \(\Rightarrow0< P< 1\)

    So P isn't a integer.

    Alone selected this answer.
  • ...
    ¤« 08/04/2018 at 15:04

    We can easily prove that P>0.

    We have: P=122+132+...+120132<11.2+12.3+...+12012.2013

                                                                     =1−12013<1

    ⇒0<P<1

    So P isn't a integer.


Post your answer

Please help Alone to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM