-
FC Alan Walker 08/04/2018 at 03:28
We can easily prove that P>0.
We have: \(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}\)
\(=1-\dfrac{1}{2013}< 1\)
\(\Rightarrow0< P< 1\)
So P isn't a integer.
Alone selected this answer. -
¤« 08/04/2018 at 15:04
We can easily prove that P>0.
We have: P=122+132+...+120132<11.2+12.3+...+12012.2013
=1−12013<1
⇒0<P<1
So P isn't a integer.