MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

07/04/2018 at 05:03
Answers
2
Follow

Given: (2x1 - 5x1)2018 + (2x2 - 5x2)2018 + ... + (2x2019 - 5x2019)2018 \(\le\)0

Prove that: \(\dfrac{x_1+x_2+...+x_{2019}}{y_1+y_2+...+y_{2019}}=2,5\)




    List of answers
  • ...
    Alone 07/04/2018 at 08:27

    \(\left(2x_1-5y_1\right)^{2018}\ge0;\left(2x_2-5y_2\right)^{2018}\ge0;.......;\left(2x_{2019}-5y_{2019}\right)^{2018}\ge0\)

    \(\Rightarrow\left(2x_1-5y_1\right)^{2018}+\left(2x_2-5y_2\right)^{2018}+......+\left(2x_{2019}-5y_{2019}\right)^{2018}\ge0\)

    Because \(\left(2x_1-5y_1\right)^{2018}+\left(2x_2-5y_2\right)^{2018}+..........+\left(2x_{2019}-5y_{2019}\right)^{2018}\le0\)

    \(\Rightarrow\left(2x_1-5y_1\right)^{2018}+\left(2x_2-5y_2\right)^{2018}+......+\left(2x_{2019}-5y_{2019}\right)^{2018}=0\)

    \(\Rightarrow2x_1=5y_1;2x_2=5y_2;..........;2x_{2019}=5y_{2019}\)

    \(\Rightarrow\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=..........=\dfrac{x_{2019}}{y_{2019}}=\dfrac{5}{2}=\dfrac{x_1+x_2+.......+x_{2019}}{y_1+y_2+.......+y_{2019}}\)

    Dao Trong Luan selected this answer.
  • ...
    ¤« 07/04/2018 at 14:38

    (2x1−5y1)2018≥0;(2x2−5y2)2018≥0;.......;(2x2019−5y2019)2018≥0

    ⇒(2x1−5y1)2018+(2x2−5y2)2018+......+(2x2019−5y2019)2018≥0

    Because (2x1−5y1)2018+(2x2−5y2)2018+..........+(2x2019−5y2019)2018≤0

    ⇒(2x1−5y1)2018+(2x2−5y2)2018+......+(2x2019−5y2019)2018=0

    ⇒2x1=5y1;2x2=5y2;..........;2x2019=5y2019

    ⇒x1y1=x2y2=..........=x2019y2019=52=x1+x2+.......+x2019y1+y2+.......+y2019


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM