MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

07/04/2018 at 05:00
Answers
2
Follow

Find the minimum of P = |7x - 5y| + |2z - 3x| + |xy + yz + zx - 2000| 




    List of answers
  • ...
    Lê Quốc Trần Anh Coordinator 07/04/2018 at 09:59

    We have: \(\left|7x-5y\right|\ge0\); \(\left|2z-3x\right|\ge0\) and \(\left|xy+yz+zx-2000\right|\ge0\)

    => \(P\ge0+0+0\ge0\)

    \(P=0\) only when \(7x-5y=2z-3x=xy+yz+zx-2000=0\)

    => \(7x=5y;2z=3x;xy+yz+zx=2000\)

    => \(\dfrac{x}{5}=\dfrac{y}{7}\); \(\dfrac{z}{3}=\dfrac{x}{2}\) and \(xy+yz+zx=2000\)

    => \(\dfrac{x}{10}=\dfrac{y}{14}=\dfrac{z}{15}\) and \(xy+yz+zx=2000\)

    Put \(\dfrac{x}{10}=\dfrac{y}{14}=\dfrac{z}{15}=k\)

    We have: \(k^2=\dfrac{x}{10}\cdot\dfrac{y}{14}=\dfrac{y}{14}\cdot\dfrac{z}{15}=\dfrac{z}{15}\cdot\dfrac{x}{10}=\dfrac{xy+yz+zx}{10\cdot14+14\cdot15+15\cdot10}=\dfrac{2000}{140+210+150}\)

    \(=\dfrac{2000}{500}=4\)

    => \(k=\pm2\)

    => \(\left(x;y;z\right)=\left(20;28;30\right)\) and  \(\left(-20;-28;-30\right)\)

    So \(minP=0\) only when (x;y;z) = (20;28;30) and (-20;-28;-30)

    Dao Trong Luan selected this answer.
  • ...
    ¤« 07/04/2018 at 14:38

    We have: |7x−5y|≥0; |2z−3x|≥0 and |xy+yz+zx−2000|≥0

    => P≥0+0+0≥0

    P=0

     only when 7x−5y=2z−3x=xy+yz+zx−2000=0

    => 7x=5y;2z=3x;xy+yz+zx=2000

    => x5=y7

    ; z3=x2 and xy+yz+zx=2000

    => x10=y14=z15

     and xy+yz+zx=2000

    Put x10=y14=z15=k

    We have: k2=x10⋅y14=y14⋅z15=z15⋅x10=xy+yz+zx10⋅14+14⋅15+15⋅10=2000140+210+150

    =2000500=4

    => k=±2

    => (x;y;z)=(20;28;30)

     and  (−20;−28;−30)

    So minP=0

     only when (x;y;z) = (20;28;30) and (-20;-28;-30)


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM