MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

02/04/2018 at 11:28
Answers
3
Follow

If a,b,c >0 and $a^{2}+b^{2}+c^{2}+abc=4$
Prove that : $a+b+c\geq \sqrt{a}+\sqrt{b}+\sqrt{c}$




    List of answers
  • ...
    ¤« 03/04/2018 at 13:20

    Wrong post

    Because if a,b,c > 0 so

    ⎧⎩⎨⎪⎪a≥a−−√b≥b√c≥c√⇒a+b+c≥a−−√+b√+c√

  • ...
    FC Alan Walker 03/04/2018 at 22:25

    Dao Trong Luan is wrong.

    When \(0< a,b,c< 1\), \(\sqrt{a}>a;\sqrt{b}>b;\sqrt{c}>c\)

    Ex: \(\sqrt{0.36}=0.6>0.36\)

  • ...
    Dao Trong Luan Coordinator 02/04/2018 at 22:07

    Wrong post

    Because if a,b,c > 0 so

    \(\left\{{}\begin{matrix}a\ge\sqrt{a}\\b\ge\sqrt{b}\\c\ge\sqrt{c}\end{matrix}\right.\Rightarrow a+b+c\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM