MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

FC Alan Walker

25/03/2018 at 03:19
Answers
2
Follow

How many ordered triples of integers (m, n, p) exist such that mn = p, np = m and mp = n?




    List of answers
  • ...
    ¤« 02/04/2018 at 13:14

    ⎪mn=pnp=mmp=n⇒mn.np.mp=p.m.n⇔m2.n2.p2=m.n.p

    ⇒m.n.p.(m.n.p−1)=0

    ⇔[m.n.p=0m.n.p=1

    With m.n.p=0⇒p2=0⇒p=0⇒m=n=0

    With m.n.p=1⇒p2=1⇒p=±1

      If p=1

     then {mn=1m=n⇒[m=n=1m=n=−1

      If  p=−1

     then {mn=−1m=−n⇒[m=1,n=−1m=−1,n=1

     So have 5 ordered triples of integers satisfied

  • ...
    Alone 26/03/2018 at 05:27

    \(\left\{{}\begin{matrix}mn=p\\np=m\\mp=n\end{matrix}\right.\)\(\Rightarrow mn.np.mp=p.m.n\Leftrightarrow m^2.n^2.p^2=m.n.p\)

    \(\Rightarrow m.n.p.\left(m.n.p-1\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m.n.p=0\\m.n.p=1\end{matrix}\right.\)

    With \(m.n.p=0\Rightarrow p^2=0\Rightarrow p=0\Rightarrow m=n=0\)

    With \(m.n.p=1\Rightarrow p^2=1\Rightarrow p=\pm1\)

      If \(p=1\) then \(\left\{{}\begin{matrix}mn=1\\m=n\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}m=n=1\\m=n=-1\end{matrix}\right.\)

      If  \(p=-1\) then \(\left\{{}\begin{matrix}mn=-1\\m=-n\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}m=1,n=-1\\m=-1,n=1\end{matrix}\right.\)

     So have 5 ordered triples of integers satisfied


Post your answer

Please help FC Alan Walker to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM