FC Alan Walker
25/03/2018 at 03:19-
¤« 02/04/2018 at 13:14
⎪mn=pnp=mmp=n⇒mn.np.mp=p.m.n⇔m2.n2.p2=m.n.p
⇒m.n.p.(m.n.p−1)=0
⇔[m.n.p=0m.n.p=1
With m.n.p=0⇒p2=0⇒p=0⇒m=n=0
With m.n.p=1⇒p2=1⇒p=±1
If p=1
then {mn=1m=n⇒[m=n=1m=n=−1
If p=−1
then {mn=−1m=−n⇒[m=1,n=−1m=−1,n=1
So have 5 ordered triples of integers satisfied
-
Alone 26/03/2018 at 05:27
\(\left\{{}\begin{matrix}mn=p\\np=m\\mp=n\end{matrix}\right.\)\(\Rightarrow mn.np.mp=p.m.n\Leftrightarrow m^2.n^2.p^2=m.n.p\)
\(\Rightarrow m.n.p.\left(m.n.p-1\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m.n.p=0\\m.n.p=1\end{matrix}\right.\)
With \(m.n.p=0\Rightarrow p^2=0\Rightarrow p=0\Rightarrow m=n=0\)
With \(m.n.p=1\Rightarrow p^2=1\Rightarrow p=\pm1\)
If \(p=1\) then \(\left\{{}\begin{matrix}mn=1\\m=n\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}m=n=1\\m=n=-1\end{matrix}\right.\)
If \(p=-1\) then \(\left\{{}\begin{matrix}mn=-1\\m=-n\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}m=1,n=-1\\m=-1,n=1\end{matrix}\right.\)
So have 5 ordered triples of integers satisfied