MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Anh Duy

21/03/2018 at 15:48
Answers
2
Follow

Every week (starting from question 1) I will post 6 - 7 questions to get a point:

- The fastest person who answer correctly will get 1 point/question/answer

- You can still answer my old question at https://e-learning.codienhanoi.edu.vn/discuss/member/leanhduy0206 and get point

THE QUESTION THIS TIME IS:

19) Given\(\Delta ABC\) (AB = AC), \(\widehat{A}\) = 20o. Take point D on AB that AD = BC

     Find \(\widehat{ACD}\)  A B C D A This picture is for illustration purposes only

Every solution worths one point




    List of answers
  • ...
    ¤« 24/03/2018 at 13:12

    Draw the equilateral triangle EBC

    Consider Δ

    AEB and Δ

    AEC, we have:

    - AE is common edge (hypothesis) 

    - AB = AC (hypothesis) 

    - EB = EC (Δ

    EBC is a equilateral triangle) 

    => Δ

    AEB = Δ

    AEC (S-S-S) 

    => EABˆ=EACˆ=20o2=10o

    Δ

    ABC balance at A => ABCˆ=ACBˆ=180o−20o2=80o

    Because Δ

    EBC is a equilateral triangle so EBCˆ=ECBˆ=60o

    ⇒EBAˆ=ECAˆ=80o−60o=20o

    Consider Δ

    AEC and Δ

    CDA, we have:

    - AC is common edge (hypothesis) 

    - DACˆ=ACEˆ=20o

    - AD = EC (= BC) 

    => Δ

    AEC = Δ

    CDA (S-A-S) 

    => ACDˆ=EACˆ=10o

  • ...
    Dao Trong Luan Coordinator 22/03/2018 at 12:02

    A B C D E  

    Draw the equilateral triangle EBC

    Consider \(\Delta\)AEB and \(\Delta\)AEC, we have:

    - AE is common edge (hypothesis) 

    - AB = AC (hypothesis) 

    - EB = EC (\(\Delta\)EBC is a equilateral triangle) 

    => \(\Delta\)AEB = \(\Delta\)AEC (S-S-S) 

    => \(\widehat{EAB}=\widehat{EAC}=\dfrac{20^o}{2}=10^o\)

    \(\Delta\)ABC balance at A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-20^o}{2}=80^o\)

    Because \(\Delta\)EBC is a equilateral triangle so \(\widehat{EBC}=\widehat{ECB}=60^o\)

    \(\Rightarrow\widehat{EBA}=\widehat{ECA}=80^o-60^o=20^o\)

    Consider \(\Delta\)AEC and \(\Delta\)CDA, we have:

    - AC is common edge (hypothesis) 

    - \(\widehat{DAC}=\widehat{ACE}=20^o\)

    - AD = EC (= BC) 

    => \(\Delta\)AEC = \(\Delta\)CDA (S-A-S) 

    => \(\widehat{ACD}=\widehat{EAC}=10^o\)


Post your answer

Please help Lê Anh Duy to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM