MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

08/03/2018 at 07:07
Answers
2
Follow

Prove that: \(2^m+3^n⋮23\left(\forall m,n\in N\right)̸\)




    List of answers
  • ...
    Dao Trong Luan Coordinator 08/03/2018 at 12:15

    Suppose 2m + 3n ⋮ 23

    => \(8^n\left(2^m+3^n\right)\text{⋮}23\)

    \(\Rightarrow2^{m+3n}+24^n\text{⋮}23\)

    Because \(24\equiv1\left(mod23\right)\Rightarrow24^n\equiv1\left(mod23\right)\)

    \(\Rightarrow2^{m+3n}+24^n\equiv2^{m+3n}+1\left(mod23\right)\)

    We must prove that 2m+3n + 1 doesn't divisible by 23

    Simple we can have a example: 211 \(⋮̸23\)

    So \(2^m+3^n⋮23̸\)

    Selected by MathYouLike
  • ...
    ¤« 11/03/2018 at 09:35

    Suppose 2m + 3n ⋮ 23

    => 8n(2m+3n)⋮23

    ⇒2m+3n+24n⋮23

    Because 24≡1(mod23)⇒24n≡1(mod23)

    ⇒2m+3n+24n≡2m+3n+1(mod23)

    We must prove that 2m+3n + 1 doesn't divisible by 23

    Simple we can have a example: 211 ⋮̸ 23

    So 2m+3n⋮23̸ 


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM