MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

07/03/2018 at 04:24
Answers
2
Follow

What is the sum of the terms in the infinite series \(1+\dfrac{1}{4}+\dfrac{1}{16}+...\).Express your answer as a common fraction.




    List of answers
  • ...
    Doan Le Minh Hong moderators 09/03/2018 at 15:52

    Let \(A= 1+\dfrac1 4+ \dfrac{1}{16}+...=\displaystyle \sum_{n=0}^{\infty}\dfrac{1}{4^n}\).

    We calculate the sum of \(n\) first numbers of the series \(A\).

    \(S_n=\displaystyle \sum_{i=0}^n \dfrac{1}{4^i}=\dfrac{1-\dfrac{1}{4^{n+1}}}{1-\dfrac1 4}=\dfrac4 3 \times \Bigg (1-\dfrac{1}{4^{n+1}} \Bigg )\)

    Let \(n \rightarrow \infty\), we have \(S_n \rightarrow A\), and \(S_n \rightarrow \dfrac4 3\).

    As the limit of \(S_n\) is unique, we have \(A=\dfrac4 3\).

    Lê Quốc Trần Anh selected this answer.
  • ...
    ¤« 11/03/2018 at 09:36

    Let A=1+14+116+...=∑n=0∞14n

    .

    We calculate the sum of n

    first numbers of the series A

    .

    Sn=∑i=0n14i=1−14n+11−14=43×(1−14n+1)

    Let n→∞

    , we have Sn→A, and Sn→43

    .

    As the limit of Sn

    is unique, we have A=43.


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM