MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

07/03/2018 at 04:24
Answers
2
Follow

What is the sum of the term in the infinite series \(1+\dfrac{1}{2}+\dfrac{1}{4}+...\)?




    List of answers
  • ...
    Doan Le Minh Hong moderators 09/03/2018 at 15:46

    Let \(A= 1+\dfrac1 2+ \dfrac1 4+...=\displaystyle \sum_{n=0}^{\infty}\dfrac{1}{2^n}\).

    We calculate the sum of \(n\) first numbers of the series \(A \).

    \(S_n=\displaystyle \sum_{i=0}^n \dfrac{1}{2^i}=\dfrac{1-\dfrac{1}{2^{n+1}}}{1-\dfrac1 2}=2-\dfrac{1}{2^n}\).

    Let \(n \rightarrow \infty\), we have \(S_n \rightarrow A\), and \(S_n \rightarrow 2\).

    As the limit of \(S_n\) is unique, we have \(A=2\).

    Note that the denotation of \(\displaystyle \sum_{n=0}^{\infty}\dfrac{1}{2^n}\) is just a way we write for short, in fact we cannot find the exact sum of the infinite series, we just can find the limit of the sequence \(S_n\) and we define \(\displaystyle \sum_{n=0}^{\infty}\dfrac{1}{2^n}= \lim_{n\rightarrow \infty}S_n\).

    Lê Quốc Trần Anh selected this answer.
  • ...
    ¤« 11/03/2018 at 09:36

    Let A=1+12+14+...=∑n=0∞12n

    .

    We calculate the sum of n

     first numbers of the series A

    .

    Sn=∑i=0n12i=1−12n+11−12=2−12n

    .

    Let n→∞

    , we have Sn→A, and Sn→2

    .

    As the limit of Sn

     is unique, we have A=2

    .

    Note that the denotation of ∑n=0∞12n

     is just a way we write for short, in fact we cannot find the exact sum of the infinite series, we just can find the limit of the sequence Sn and we define ∑n=0∞12n=limn→∞Sn.


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM