Fc Alan Walker
19/02/2018 at 21:15-
¤« 19/02/2018 at 21:28
We have :
\(\dfrac{x-35}{21}+\dfrac{x-36}{20}>\dfrac{x-37}{19}+\dfrac{x-38}{18}\)
\(\left(\dfrac{x-35}{21}-1\right)+\left(\dfrac{x-36}{20}-1\right)>\left(\dfrac{x-37}{19}-1\right)+\left(\dfrac{x-38}{18}-1\right)\)
\(\dfrac{x-56}{21}+\dfrac{x-56}{20}>\dfrac{x-56}{19}+\dfrac{x-56}{18}\)
\(\dfrac{x-56}{21}+\dfrac{x-56}{20}-\dfrac{x-50}{19}-\dfrac{x-50}{18}>0\)
\(\left(x-56\right)\left(\dfrac{1}{21}+\dfrac{1}{20}-\dfrac{1}{19}-\dfrac{1}{18}\right)>0\)
To \(\dfrac{1}{21}+\dfrac{1}{20}-\dfrac{1}{19}-\dfrac{1}{18}\) different 0
\(x-56< 0\)
\(x< 56\)