MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

FA Liên Quân Garena

12/01/2018 at 12:49
Answers
2
Follow

Prove that n is the natural number we always have :

\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^2}< \dfrac{1}{2}\)




    List of answers
  • ...
    Fc Alan Walker 22/01/2018 at 12:30

    We have:

    1n2+(n+1)2=12n2+2n+1=12⎛⎜ ⎜ ⎜⎝1n2+n+12⎞⎟ ⎟ ⎟⎠<12(1n2+n)=12(1n−1n+1)

    Apply, we have:

    15+113+125+...+1n2+(n+1)2<12(1−12)+12(13−14)+12(14−15)+...+12(1n−1n+1)=12(1−1n+1)<12

  • ...
    Dao Trong Luan Coordinator 12/01/2018 at 13:07

    We have:

    \(\dfrac{1}{n^2+\left(n+1\right)^2}=\dfrac{1}{2n^2+2n+1}=\dfrac{1}{2}\left(\dfrac{1}{n^2+n+\dfrac{1}{2}}\right)< \dfrac{1}{2}\left(\dfrac{1}{n^2+n}\right)=\dfrac{1}{2}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

    Apply, we have:

    \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^2}< \dfrac{1}{2}\left(1-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+\dfrac{1}{2}\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+...+\dfrac{1}{2}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{n+1}\right)< \dfrac{1}{2}\)


Post your answer

Please help FA Liên Quân Garena to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM