MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

FA Liên Quân Garena

08/01/2018 at 22:17
Answers
1
Follow

perform calculation :

\(\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)...\left(1-\dfrac{1}{1+2+3+...+1986}\right)\)




    List of answers
  • ...
    Alone 09/01/2018 at 15:34

    We have:\(1-\dfrac{1}{1+2+......+n}=1-\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=1-\dfrac{2}{n\left(n+1\right)}=\dfrac{n\left(n+1\right)-2}{n\left(n+1\right)}=\dfrac{n^2+n-2}{n\left(n+1\right)}\)

    \(=\dfrac{n^2-n+2n-2}{n\left(n+1\right)}=\dfrac{n\left(n-1\right)+2\left(n-1\right)}{n\left(n+1\right)}=\dfrac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)

    Instead in the expression we have:

    A=\(\dfrac{4.1}{2.3}+\dfrac{5.2}{3.4}+.......+\dfrac{1988.1985}{1986.1987}\)

    \(=\dfrac{1.2....1985}{3.4....1987}.\dfrac{4.5.....1988}{2.3.....1986}\)

    \(=\dfrac{1.2}{1986.1987}.\dfrac{1987.1988}{2.3}=\dfrac{1988}{3.1986}=\dfrac{1988}{5958}=\dfrac{994}{2979}\)

    P/s:A is the expression

    Selected by MathYouLike

Post your answer

Please help FA Liên Quân Garena to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM