Prove that if a , b , c are positive numbers and a + b + c = 1 then : \(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+\left(c+\dfrac{1}{c}\right)^2>33\)
Prove that if a , b , c are positive numbers and a + b + c = 1 then :
\(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+\left(c+\dfrac{1}{c}\right)^2>33\)