MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

FA Liên Quân Garena

08/01/2018 at 22:05
Answers
2
Follow

Consider the expression :

\(S=\dfrac{1}{2^0}+\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{1992}{2^{1991}}\)

Prove that : S < 4




    List of answers
  • ...
    FA KAKALOTS 10/02/2018 at 14:23

    S=120+221+322+...+199221991

    ⇒2S=2+21+32+...+199221990

    ⇒2S−S=(2+21+32+...+199221990)−(120+221+322+...+199221991)

    ⇒S=2+120+121+122+...+121990−199221991

  • ...
    Dao Trong Luan Coordinator 09/01/2018 at 12:29

    \(S=\dfrac{1}{2^0}+\dfrac{2}{2^1}+\dfrac{3}{2^2}+...+\dfrac{1992}{2^{1991}}\)

    \(\Rightarrow2S=2+\dfrac{2}{1}+\dfrac{3}{2}+...+\dfrac{1992}{2^{1990}}\)

    \(\Rightarrow2S-S=\left(2+\dfrac{2}{1}+\dfrac{3}{2}+...+\dfrac{1992}{2^{1990}}\right)-\left(\dfrac{1}{2^0}+\dfrac{2}{2^1}+\dfrac{3}{2^2}+...+\dfrac{1992}{2^{1991}}\right)\)

    \(\Rightarrow S=2+\dfrac{1}{2^0}+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{1990}}-\dfrac{1992}{2^{1991}}\)


Post your answer

Please help FA Liên Quân Garena to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM