FA Liên Quân Garena
08/01/2018 at 22:05-
FA KAKALOTS 10/02/2018 at 14:23
S=120+221+322+...+199221991
⇒2S=2+21+32+...+199221990
⇒2S−S=(2+21+32+...+199221990)−(120+221+322+...+199221991)
⇒S=2+120+121+122+...+121990−199221991
-
\(S=\dfrac{1}{2^0}+\dfrac{2}{2^1}+\dfrac{3}{2^2}+...+\dfrac{1992}{2^{1991}}\)
\(\Rightarrow2S=2+\dfrac{2}{1}+\dfrac{3}{2}+...+\dfrac{1992}{2^{1990}}\)
\(\Rightarrow2S-S=\left(2+\dfrac{2}{1}+\dfrac{3}{2}+...+\dfrac{1992}{2^{1990}}\right)-\left(\dfrac{1}{2^0}+\dfrac{2}{2^1}+\dfrac{3}{2^2}+...+\dfrac{1992}{2^{1991}}\right)\)
\(\Rightarrow S=2+\dfrac{1}{2^0}+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{1990}}-\dfrac{1992}{2^{1991}}\)