MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

05/01/2018 at 17:33
Answers
1
Follow

In regular octagon ABCDEFGH, what is the ratio of the area of triangle ADF to the area of triangle AHF? Express your answer as a decimal to the nearest hundredth.




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 10/01/2018 at 10:21

    Draw \(HI,GK\perp EF\)

    Each angle of the octagon is : \(\dfrac{180\left(8-2\right)}{8}=135^0\)

    \(\Rightarrow\widehat{HAF}=\widehat{GFA}=180^0-135^0=45^0\)

    Let a be the side length of the octagon, then \(HI=IA=GK=KF=\dfrac{a}{\sqrt{2}};IK=HG=a\)

    \(\Rightarrow AF=a\left(1+\sqrt{2}\right)\Rightarrow S_{AHF}=\dfrac{a\left(1+\sqrt{2}\right).\dfrac{a}{\sqrt{2}}}{2}=\dfrac{a^2\left(2+\sqrt{2}\right)}{4}\)

    \(S_{ADF}=S_{ABCDEFGH}-S_{AFGH}-S_{ABCD}-S_{FED}\)

    \(=S_{AFGH}+S_{ABEF}+S_{BCDE}-S_{AFGH}-S_{ABCD}-S_{FED}\)

    \(=S_{ABEF}-S_{FED}=a.a\left(1+\sqrt{2}\right)-a.\dfrac{a}{\sqrt{2}}:2\)

    \(=\dfrac{a^2\left(4+3\sqrt{2}\right)}{4}\)

    The answer is : \(\dfrac{4+3\sqrt{2}}{4}:\dfrac{2+\sqrt{2}}{4}=1+\sqrt{2}\approx2.41\)


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM