MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

03/01/2018 at 16:56
Answers
2
Follow

 In the addition problem shown, A, B, C and D represent distinct digits.

ABC + DBBB = 2011.

What is the value of A + B + C + D?




    List of answers
  • ...
    Dao Trong Luan Coordinator 03/01/2018 at 18:20

    ABC + DBBB = 2011

    => 100A + 10B + C + 1000D + 100B + 10B + B = 2011

    => 100A + 1121B + 1000D + C = 2011

    Because A,B,C,D are digits

    => \(\left\{{}\begin{matrix}9\ge A,D>0\\9\ge B,C\ge0\end{matrix}\right.\)

    If B = 2 => 100A + 1121B + 1000D + C = 100A + 2242 + 1000D + C > 2011 [unsatisfactory]

    => B = 0 or 1

    If D = 2 => 100A + 1121B + 1000D + C = 100A + 1121B + 2000 + C = 2011

    <=> 100A + 1121B + C = 11 but 100A \(\ge100\) [unsatisfactory]

    => D = 0 or 1

    ** B = 0, D = 0

    => 100A + 1121B + 1000D + C = 100A + 0 + 0 + C = 2011

    But 101 \(\le\) 100A + C \(\le909\)

    <=> unsatisfactory 

    ** B = 0; D = 1

    => 100A + 1121B + 1000D + C = 100A + 0 + 1000 + C = 2011

    <=> 100A + C = 1011 [the same this case]

    <=> unsatisfactory

    ** B = 1; D = 0

    => 100A + 1121B + 1000D + C = 100A + 1121 + 0 + C = 2011

    => 100A + C = 890

    But C < 10 => A = 8 <=> 800 + C = 890 <=> C = 90 > 10 [unsatisfactory]

    ** B=1; D = 1

    => 100A + 1121B + 1000D + C = 100A + 1121 + 1000 + C = 2011

    => 100A + C = - 11 [ unsatisfactory ]

    So there are no numbers are satisfactory 

    So A + B + C + D \(\in\phi\)

    Lê Quốc Trần Anh selected this answer.
  • ...
    FA Liên Quân Garena 08/01/2018 at 21:50

    BC + DBBB = 2011

    => 100A + 10B + C + 1000D + 100B + 10B + B = 2011

    => 100A + 1121B + 1000D + C = 2011

    Because A,B,C,D are digits

    => {9≥A,D>09≥B,C≥0

    If B = 2 => 100A + 1121B + 1000D + C = 100A + 2242 + 1000D + C > 2011 [unsatisfactory]

    => B = 0 or 1

    If D = 2 => 100A + 1121B + 1000D + C = 100A + 1121B + 2000 + C = 2011

    <=> 100A + 1121B + C = 11 but 100A ≥100

     [unsatisfactory]

    => D = 0 or 1

    ** B = 0, D = 0

    => 100A + 1121B + 1000D + C = 100A + 0 + 0 + C = 2011

    But 101 ≤

     100A + C ≤909

    <=> unsatisfactory 

    ** B = 0; D = 1

    => 100A + 1121B + 1000D + C = 100A + 0 + 1000 + C = 2011

    <=> 100A + C = 1011 [the same this case]

    <=> unsatisfactory

    ** B = 1; D = 0

    => 100A + 1121B + 1000D + C = 100A + 1121 + 0 + C = 2011

    => 100A + C = 890

    But C < 10 => A = 8 <=> 800 + C = 890 <=> C = 90 > 10 [unsatisfactory]

    ** B=1; D = 1

    => 100A + 1121B + 1000D + C = 100A + 1121 + 1000 + C = 2011

    => 100A + C = - 11 [ unsatisfactory ]

    So there are no numbers are satisfactory 

    So A + B + C + D ∈ϕ


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM