MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Alone

02/01/2018 at 20:57
Answers
2
Follow

Find x,y are integer fỏ 2x2+3y2+4x=19




    List of answers
  • ...
    Dao Trong Luan Coordinator 02/01/2018 at 21:38

    We have:

    \(2x^2+3y^2+4x=19\)

    \(\Leftrightarrow2x^2+4x+2=21-3y^2\)

    \(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

    Because \(2\left(x+1\right)^2⋮2\Rightarrow3\left(7-y^2\right)⋮2\)

    But \(3⋮̸2\)=> \(7-y^2⋮2\)

    => y2 is a odd => y is a odd

    We have:

    \(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\Rightarrow0\le y^2\le7\)

    And y is a integer => \(y^2\in\left\{0;1;4\right\}\)

    But y2 is a odd => y2 = 1 <=> \(y=\pm1\)

    \(\Rightarrow2\left(x+1\right)^2=21-3\cdot1=18\)

    \(\Rightarrow\left(x+1\right)^2=9\)

    \(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

    So we have \(\left(x,y\right)=\left(2;1\right);\left(2;-1\right);\left(-4;1\right);\left(-4;-1\right)\)

    Alone selected this answer.
  • ...
    FA Liên Quân Garena 08/01/2018 at 21:54

    We have:

    2x2+3y2+4x=19

    ⇔2x2+4x+2=21−3y2

    ⇔2(x+1)2=3(7−y2)

    Because 2(x+1)2⋮2⇒3(7−y2)⋮2

    But 3⋮̸2

    => 7−y2⋮2

    => y2 is a odd => y is a odd

    We have:

    (x+1)2≥0⇒7−y2≥0⇒0≤y2≤7

    And y is a integer => y2∈{0;1;4}

    But y2 is a odd => y2 = 1 <=> y=±1

    ⇒2(x+1)2=21−3⋅1=18

    ⇒(x+1)2=9

    ⇒[x+1=3x+1=−3⇒[x=2x=−4

    So we have (x,y)=(2;1);(2;−1);(−4;1);(−4;−1)


Post your answer

Please help Alone to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM