-
We have:
\(2x^2+3y^2+4x=19\)
\(\Leftrightarrow2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)
Because \(2\left(x+1\right)^2⋮2\Rightarrow3\left(7-y^2\right)⋮2\)
But \(3⋮̸2\)=> \(7-y^2⋮2\)
=> y2 is a odd => y is a odd
We have:
\(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\Rightarrow0\le y^2\le7\)
And y is a integer => \(y^2\in\left\{0;1;4\right\}\)
But y2 is a odd => y2 = 1 <=> \(y=\pm1\)
\(\Rightarrow2\left(x+1\right)^2=21-3\cdot1=18\)
\(\Rightarrow\left(x+1\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
So we have \(\left(x,y\right)=\left(2;1\right);\left(2;-1\right);\left(-4;1\right);\left(-4;-1\right)\)
Alone selected this answer. -
FA Liên Quân Garena 08/01/2018 at 21:54
We have:
2x2+3y2+4x=19
⇔2x2+4x+2=21−3y2
⇔2(x+1)2=3(7−y2)
Because 2(x+1)2⋮2⇒3(7−y2)⋮2
But 3⋮̸2
=> 7−y2⋮2
=> y2 is a odd => y is a odd
We have:
(x+1)2≥0⇒7−y2≥0⇒0≤y2≤7
And y is a integer => y2∈{0;1;4}
But y2 is a odd => y2 = 1 <=> y=±1
⇒2(x+1)2=21−3⋅1=18
⇒(x+1)2=9
⇒[x+1=3x+1=−3⇒[x=2x=−4
So we have (x,y)=(2;1);(2;−1);(−4;1);(−4;−1)