-
\(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
=> The minimum of M is -36 when x = 0 or x = -5
Alone selected this answer. -
FA Liên Quân Garena 02/01/2018 at 12:28
M=(x−1)(x+2)(x+3)(x+6)
=[(x−1)(x+6)][(x+2)(x+3)]
=(x2+5x−6)(x2+5x+6)
=(x2+5x)2−36≥−36
=> The minimum of M is -36 when x = 0 or x = -5
-
Help you solve math 01/01/2018 at 20:19
We have :
M = (x - 1) (x + 2) (x + 3) (x + 6)
=[(x - 1) (x + 6)] [(x + 2) (x + 3)
= (x . x + 5x - 6) (x . x + 5x + 6)
= (x.x + 5x)2 - 36
= (x2 + 5x)2 > or = -36
The answer is :
M is 36 when x = 0
x = -5
-