MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Alone

01/01/2018 at 12:09
Answers
4
Follow

Find the minimum of M=\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)




    List of answers
  • ...
    Dao Trong Luan Coordinator 01/01/2018 at 12:22

    \(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

    \(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

    \(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

    \(=\left(x^2+5x\right)^2-36\ge-36\)

    => The minimum of M is -36 when x = 0 or x = -5

    Alone selected this answer.
  • ...
    FA Liên Quân Garena 02/01/2018 at 12:28

    M=(x−1)(x+2)(x+3)(x+6)

    =[(x−1)(x+6)][(x+2)(x+3)]

    =(x2+5x−6)(x2+5x+6)

    =(x2+5x)2−36≥−36

    => The minimum of M is -36 when x = 0 or x = -5

  • ...
    Help you solve math 01/01/2018 at 20:19

    We have :

    M = (x - 1) (x + 2) (x + 3) (x + 6)

    =[(x - 1) (x + 6)] [(x + 2) (x + 3)

    = (x . x + 5x - 6) (x . x + 5x + 6)

    = (x.x + 5x)2 - 36

    = (x2 + 5x)2 > or = -36

    The answer is : 

    M is 36 when x = 0

                           x = -5

  • ...
    Help you solve math 01/01/2018 at 20:21

    false The answer is 

    M is -36 when x = 0

                            x = -5


Post your answer

Please help Alone to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM