-
\(\dfrac{x+b}{x-5}+\dfrac{x+5}{x-b}=2\)
\(\Rightarrow\dfrac{x+b-\left(x-5\right)}{x-5}+\dfrac{x+5-\left(x-b\right)}{x-b}=0\)
\(\Rightarrow\dfrac{b+5}{x-5}+\dfrac{b+5}{x-b}=0\)
\(\Rightarrow\left(b+5\right)\left(\dfrac{1}{x-5}+\dfrac{1}{x-b}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b+5=0\\\dfrac{1}{x-5}+\dfrac{1}{x-b}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=-5\\x-b+x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=-5\\x=\dfrac{b+5}{2}\end{matrix}\right.\)
+) With b = -5
=> \(\dfrac{x-5}{x-5}+\dfrac{x+5}{x+5}=2\) (Its true)
So with b = -5 and x \(\in R\) then equation is satisfy
+) With \(x=\dfrac{b+5}{2}\)
=> \(\dfrac{\dfrac{b+5}{2}+b}{\dfrac{b+5}{2}-5}+\dfrac{\dfrac{b+5}{2}+5}{\dfrac{b+5}{2}-b}=\dfrac{\dfrac{3b+5}{2}}{\dfrac{b-5}{2}}+\dfrac{\dfrac{b+15}{2}}{\dfrac{-b+5}{2}}=\dfrac{3b+5}{b-5}+\dfrac{b+15}{5-b}\)
\(=\dfrac{3b+5-\left(b+15\right)}{b-5}=\dfrac{2b-10}{b-5}=2\) (It's true)
So the pairs of numbers satisfying the equation (x;b) are \(\left(\infty;-5\right)\) ; \(\left(\dfrac{b+5}{2};\infty\right)\)
Selected by MathYouLike -
Faded 22/01/2018 at 12:41
x+bx−5+x+5x−b=2
⇒x+b−(x−5)x−5+x+5−(x−b)x−b=0
⇒b+5x−5+b+5x−b=0
⇒(b+5)(1x−5+1x−b)=0
⇒⎡⎢⎣b+5=01x−5+1x−b=0⇒[b=−5x−b+x−5=0⇒⎡⎣b=−5x=b+52
+) With b = -5
=> x−5x−5+x+5x+5=2
(Its true)
So with b = -5 and x ∈R
then equation is satisfy
+) With x=b+52
=> b+52+bb+52−5+b+52+5b+52−b=3b+52b−52+b+152−b+52=3b+5b−5+b+155−b
=3b+5−(b+15)b−5=2b−10b−5=2
(It's true)
So the pairs of numbers satisfying the equation (x;b) are (∞;−5)
; (b+52;∞)