MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Alone

27/12/2017 at 22:13
Answers
2
Follow

With n is a positive number and \(a_n=\left(-1\right)^n.\dfrac{n^2+n+1}{n!}\).Find the value of S=\(a_1+a_2+........+a_{2017}\)




    List of answers
  • ...
    Kaya Renger Coordinator 28/12/2017 at 13:57

    Because n is a positive number so n has two types

    +) With n is an odd number (Such as: a1 ; a3 ; .....)

    => \(a_n=\left(-1\right).\dfrac{n^2+n+1}{n!}\)

    Because a1 , a2 , a3 , ...... an are continuous numbers

    So (n - 1) is an even number 

    => \(a_{n-1}=1.\dfrac{n^2+n+1}{n!}\)

    With 2 continuous numbers, we can see , the total of 2 number equals to 0 

    \(\left(-1\right).\dfrac{n^2+n+1}{n!}+1.\dfrac{n^2+n+1}{n!}=0\) 

    So , with 2017 continuous number , S's value is 

    S = \(\left(a_1+a_2\right)+\left(a_2+a_3\right)+......+\left(a_{2015}+a_{2016}\right)+a_{2017}\)

    S = \(a_{2017}=\left(-1\right)^{2017}.\dfrac{2017^2+2017+1}{2017!}=-\dfrac{2017^2+2018}{2017!}\)

    Selected by MathYouLike
  • ...
    Faded 22/01/2018 at 12:41

    Because n is a positive number so n has two types

    +) With n is an odd number (Such as: a1 ; a3 ; .....)

    => an=(−1).n2+n+1n!

    Because a1 , a2 , a3 , ...... an are continuous numbers

    So (n - 1) is an even number 

    => an−1=1.n2+n+1n!

    With 2 continuous numbers, we can see , the total of 2 number equals to 0 

    (−1).n2+n+1n!+1.n2+n+1n!=0

    So , with 2017 continuous number , S's value is 

    S = (a1+a2)+(a2+a3)+......+(a2015+a2016)+a2017

    S = a2017=(−1)2017.20172+2017+12017!=−20172+20182017!


Post your answer

Please help Alone to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM