-
We have :
\(S=\left(x+y+1\right)\left(x^2+y^2\right)+\dfrac{4}{x+y}=\left(x+y\right)\left(x^2+y^2\right)+\left(x^2+y^2\right)+\dfrac{4}{x+y}\)
Applying Cauchy's inequality for two positive number , we have
\(S\ge2.\sqrt{\left(x+y\right)\left(x^2+y^2\right).\dfrac{4}{x+y}}+x^2+y^2=2.\sqrt{4\left(x^2+y^2\right)}+\left(x^2+y^2\right)\)
\(=4.\sqrt{\left(x^2+y^2\right)}+\left(x^2+y^2\right)=\sqrt{x^2+y^2}.\left(\sqrt{x^2+y^2}+5\right)\)
\(\ge1.\left(1+4\right)=5\)
So MinS = 5 <=> x = y = 1
Selected by MathYouLike -
Faded 22/01/2018 at 12:40
We have :
S=(x+y+1)(x2+y2)+4x+y=(x+y)(x2+y2)+(x2+y2)+4x+y
Applying Cauchy's inequality for two positive number , we have
S≥2.√(x+y)(x2+y2).4x+y+x2+y2=2.√4(x2+y2)+(x2+y2)
=4.√(x2+y2)+(x2+y2)=√x2+y2.(√x2+y2+5)
≥1.(1+4)=5
So MinS = 5 <=> x = y = 1