MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Alone

27/12/2017 at 22:04
Answers
2
Follow

Let x,y>0 and xy=1.Find the minimum of the expression S=\(\left(x+y+1\right)\left(x^2+y^2\right)+\dfrac{4}{x+y}\)




    List of answers
  • ...
    Kaya Renger Coordinator 28/12/2017 at 14:38

    We have :

    \(S=\left(x+y+1\right)\left(x^2+y^2\right)+\dfrac{4}{x+y}=\left(x+y\right)\left(x^2+y^2\right)+\left(x^2+y^2\right)+\dfrac{4}{x+y}\)

    Applying Cauchy's inequality for two positive number , we have 

    \(S\ge2.\sqrt{\left(x+y\right)\left(x^2+y^2\right).\dfrac{4}{x+y}}+x^2+y^2=2.\sqrt{4\left(x^2+y^2\right)}+\left(x^2+y^2\right)\)

    \(=4.\sqrt{\left(x^2+y^2\right)}+\left(x^2+y^2\right)=\sqrt{x^2+y^2}.\left(\sqrt{x^2+y^2}+5\right)\)

    \(\ge1.\left(1+4\right)=5\)

    So MinS = 5 <=> x = y = 1 

    Selected by MathYouLike
  • ...
    Faded 22/01/2018 at 12:40

    We have :

    S=(x+y+1)(x2+y2)+4x+y=(x+y)(x2+y2)+(x2+y2)+4x+y

    Applying Cauchy's inequality for two positive number , we have 

    S≥2.√(x+y)(x2+y2).4x+y+x2+y2=2.√4(x2+y2)+(x2+y2)

    =4.√(x2+y2)+(x2+y2)=√x2+y2.(√x2+y2+5)

    ≥1.(1+4)=5

    So MinS = 5 <=> x = y = 1


Post your answer

Please help Alone to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM