MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

dunglamtoan

24/12/2017 at 21:14
Answers
3
Follow

Find the integer x so that A=  \(x^2+x+6\)  is the prime number


Math Violympic


    List of answers
  • ...
    Kaya Renger Coordinator 25/12/2017 at 11:07

    With x = 0 

    => A = 0 + 0 + 6 = 6  (Removed)              Because \(6⋮\left(1;2;3;6\right)\)

    With x = 1

    => A = 1 + 1 + 6 = 8  (Removed)               Because \(8⋮\left(1;2;4;8\right)\)

    Similar , with x = 2 then A still not a prime number 

    With x \(\ge\) 3 =>  x has three forms

    \(\left\{{}\begin{matrix}x=3k\\x=3k+1\\x=3k+2\end{matrix}\right.\)

        +)  With x = 3k => A = 9k2 + 3k + 6 = 3.(3k2 + k + 2)  (Removed)

        +)  With x = 3k + 1  => A = (3k + 1)2 + (3k + 1) + 6 = 9k2 + 6k + 1 + 3k + 1 + 6 = 9k2 + 9k + 8

                                              A = 9k(k + 1) + 8

    We can see : k(k + 1) \(⋮\) 2 because it is a multiplication of 2 continuous numbers

                          8 \(⋮\) 2 too

    So A \(⋮\) 2 => x = 3k + 1 (removed)

       +)  With x = 3k + 2 => A = (3k + 2)2 + (3k + 2) + 6 = 9k2 + 12k + 4 + 3k + 2 + 6 = 9k2 + 15k +12

                                            A = 3.(3k2 + 5k + 4)    \(⋮\)   3           (Removed)

    So , without any integer value of x that satisfy A is a prime number 

    Selected by MathYouLike
  • ...
    Dao Trong Luan Coordinator 25/12/2017 at 11:30

    We have:

    \(x^2+x=x\left(x+1\right)⋮2\) is the product of two consecutive integers, so divisible by 2

    \(\Rightarrow A=x^2+x+6⋮2\)

    But A is a prime number and we only have an even prime number is 2

    So A = 2

    => \(x^2+x+6=2\)

    \(\Rightarrow x\in\varnothing\)

    So there isn't any integer x satisfy the above condition

  • ...
    Faded 22/01/2018 at 12:42

    With x = 0 

    => A = 0 + 0 + 6 = 6  (Removed)              Because 6⋮(1;2;3;6)

    With x = 1

    => A = 1 + 1 + 6 = 8  (Removed)               Because 8⋮(1;2;4;8)

    Similar , with x = 2 then A still not a prime number 

    With x ≥

     3 =>  x has three forms

    ⎧⎪⎨⎪⎩x=3kx=3k+1x=3k+2

        +)  With x = 3k => A = 9k2 + 3k + 6 = 3.(3k2 + k + 2)  (Removed)

        +)  With x = 3k + 1  => A = (3k + 1)2 + (3k + 1) + 6 = 9k2 + 6k + 1 + 3k + 1 + 6 = 9k2 + 9k + 8

                                              A = 9k(k + 1) + 8

    We can see : k(k + 1) ⋮

     2 because it is a multiplication of 2 continuous numbers

                          8 ⋮

     2 too

    So A ⋮

     2 => x = 3k + 1 (removed)

       +)  With x = 3k + 2 => A = (3k + 2)2 + (3k + 2) + 6 = 9k2 + 12k + 4 + 3k + 2 + 6 = 9k2 + 15k +12

                                            A = 3.(3k2 + 5k + 4)    ⋮

       3           (Removed)

    So , without any integer value of x that satisfy A is a prime number


Post your answer

Please help dunglamtoan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM