MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

20/12/2017 at 20:47
Answers
4
Follow

Find all integer number x,y satify: \(\dfrac{2017^x-2016^{y+1}}{2015}\) is a square number

Please do fast, I need it before this morning




    List of answers
  • ...
    Kaya Renger Coordinator 20/12/2017 at 23:07

    Denote \(\left\{{}\begin{matrix}A=\dfrac{2017^x-2016^{y+1}}{2015}\\B=2017^x-2016^{y+1}\\C=2015\end{matrix}\right.\)

    For A is a square number then \(B⋮C\) 

    <=> \(2017^x-2016^{y+1}⋮2015\)

    <=> \(2017^x-2^x+2^x-2016^{y+1}+1-1⋮2015\)

    <=> \(2^x-1⋮2015\)

    <=> \(2^x\equiv1\left(mod2015\right)\)                                                                (*)

         +) With x = 0 then (*) is true 

         +) With x = 1 then (*) is wrong

         +) With x = 2 then (*) is wrong

         +) With \(x\ge3\) => \(\left[{}\begin{matrix}x=3k\\x=3k+1\\x=3k+2\end{matrix}\right.\left(k>0\right)\)

               -) x = 3k => (*) <=> \(2^{3k}\equiv1\left(mod2015\right)\)  <=>  \(8^k\equiv1\left(mod2015\right)\)  (wrong , because k > 0)

               Similar , we can show that with x = 3k + 1 , x = 3k + 2 then (*) is still wrong 

    So x = 0 is satisfy 

    Change x = 0 into (*) 

    => \(1-2016^{y+1}⋮2015\) 

    For \(1-2016^{y+1}⋮2015\) then   2016y + 1 = 1

    <=> y + 1 = 0

    <=> y = -1 

    Change x = 0 , y = -1 into A , we have A = 0  (satisfy)

    Conclude : With x = 0 , y = -1 then A is a square number 

    Selected by MathYouLike
  • ...
    Kaya Renger Coordinator 20/12/2017 at 22:50

    Denote \(\left\{{}\begin{matrix}A=\dfrac{2017^x-2016^{y+1}}{2015}\\B=2017^x-2016^{y+1}\\C=2015\end{matrix}\right.\)

    For A is a square number so that \(B⋮C\)

    <=> \(2017^x-2016^{y+1}⋮2015\)                                                        (1) 

    <=> 2017x - 2x + 2x - 2016y + 1 + 1 - 1 \(⋮\) 2015

    <=> 2x - 1 \(⋮\) 2015 

    => \(2^x\equiv1\left(mod2015\right)\)     (*)

    +) With x = 0 then (*) is true

    +) With x = 1 then (*) is false

    +) With x = 2 then (*) is false

    +) With x \(\ge3\) => \(\left[{}\begin{matrix}x=3k\\x=3k+1\\x=3k+2\end{matrix}\right.\left(k>0\right)\) 

    Change three cases into (*) , it's still wrong
    So , x = 0 is satisfy 

    Because x = 0 => (1) <=> \(1-2016^{y+1}⋮2015\)

    For \(1-2016^{y+1}⋮2015\) then 2016y+1 = 1 => y + 1 = 0 => y = -1

    Change x = 0 , y = -1 into A 

    A = 0 (satisfy the problem) 

    Conclude : With x = 0 , y = -1 then A is a square number 


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM