MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

KEITA FC 8C

19/12/2017 at 12:32
Answers
3
Follow

given the positive integers a , b , c such that \(2a^a+b^b=3c^c\) . Evaluate the expression \(P=2015^{a-b}+2016^{b-c}+2017^{c-a}\)




    List of answers
  • ...
    Kaya Renger Coordinator 19/12/2017 at 20:14

    2aa + bb = 3cc

    +) With c is an odd number 

    => 3cc is an odd number => 2aa + bb is an odd number 

         <*> With a is an even number => 2aa is an even number => b is an odd number

                => \(\left\{{}\begin{matrix}a\ge2\\b\ge1\\c\ge1\end{matrix}\right.\)  =>  \(\left\{{}\begin{matrix}2a^a+b^b\ge2.2^2+1^1=7\\3c^c\ge3\end{matrix}\right.\) (removed)

         <*> With a is an odd number =>  2aa is an even number => b is an odd number

                => \(\left\{{}\begin{matrix}a\ge1\\b\ge1\\c\ge1\end{matrix}\right.\)  => \(\left\{{}\begin{matrix}2a^a+b^b\ge2.1^1+1^1=3\\3c^c\ge3\end{matrix}\right.\)  (satisfy)

    +) With c is an even number 

    => 3cc is an even number => 2aa + bb is an even number 

         <*>  With a is an even number => 2aa is an even number => bb is an even number 

                 => \(\left\{{}\begin{matrix}a\ge2\\b\ge2\\c\ge2\end{matrix}\right.\)  =>  \(\left\{{}\begin{matrix}2a^a+b^b\ge2.2^2+2^2=12\\3c^c\ge3.2^2=12\end{matrix}\right.\)  (satisfy)

         <*> With a is an odd number  =>  2aa is an even number => bb is an even number  

                  => \(\left\{{}\begin{matrix}a\ge1\\b\ge2\\c\ge2\end{matrix}\right.\)  =>  \(\left\{{}\begin{matrix}2a^a+b^b\ge2.1^1+2^2=6\\3c^c\ge3.2^2=12\end{matrix}\right.\)  (removed) 

    From the above analysis, we can see , if a = b = c > 0 then the equation is satisfy .

    So P = \(2015^{a-b}+2016^{b-c}+2017^{c-a}=2015^0+2016^0+2017^0=1+1+1=3\)

    Selected by MathYouLike
  • ...
    Faded 22/01/2018 at 12:43

    aa + bb = 3cc

    +) With c is an odd number 

    => 3cc is an odd number => 2aa + bb is an odd number 

         <*> With a is an even number => 2aa is an even number => b is an odd number

                => ⎧⎪⎨⎪⎩a≥2b≥1c≥1

      =>  {2aa+bb≥2.22+11=73cc≥3

     (removed)

         <*> With a is an odd number =>  2aa is an even number => b is an odd number

                => ⎧⎪⎨⎪⎩a≥1b≥1c≥1

      => {2aa+bb≥2.11+11=33cc≥3

      (satisfy)

    +) With c is an even number 

    => 3cc is an even number => 2aa + bb is an even number 

         <*>  With a is an even number => 2aa is an even number => bb is an even number 

                 => ⎧⎪⎨⎪⎩a≥2b≥2c≥2

      =>  {2aa+bb≥2.22+22=123cc≥3.22=12

      (satisfy)

         <*> With a is an odd number  =>  2aa is an even number => bb is an even number  

                  => ⎧⎪⎨⎪⎩a≥1b≥2c≥2

      =>  {2aa+bb≥2.11+22=63cc≥3.22=12

      (removed) 

    From the above analysis, we can see , if a = b = c > 0 then the equation is satisfy .

    So P = 2015a−b+2016b−c+2017c−a=20150+20160+20170=1+1+1=3

  • ...
    Kaya Renger Coordinator 19/12/2017 at 21:10

    Because a,b,c are positive interger numbers so that 

    a,b,c > 0

    If a,b,c are even numbers then \(a,b,c\ge2\)

    If a,b,c are odd numbers then \(a,b,c\ge1\)


Post your answer

Please help KEITA FC 8C to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM