MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

18/12/2017 at 11:40
Answers
3
Follow

Given a,b,c,d satisfy a + b = c + d , a2 + b2 = c2 + d2 .

Show that : a2018 + b2018 = c2018 + d2018




    List of answers
  • ...
    Nguyễn Tuấn Minh 18/12/2017 at 13:20

    From a+b=c+d

    => (a+b)2=(c+d)2

    =>ab=cd

    Consider (a+b)3=(c+d)3

    We have a3+3ab(a+b)+b3=c3+3cd+d3

    =>a3+b3=c3+d3

    Consider (a3+b3).(a+b)=(c3+d3).(c+d)

    => a4+ab(a2+b2)+b4=c4+cd(c2+d2)

    =>a4+b4=c4+d4

    We can infer this

    an+bn=cn+dn

    => (an+bn).(a+b)=(cn+dn).(c+d)

    => an+1+ab(an-1+bn-1)+bn+1=cn+1+cd(cn-1+dn-1)+dn+1

    =>an+1+bn+1=cn+1+dn+1

    So we have a2018+b2018=c2018+d2018

    Kaya Renger selected this answer.
  • ...
    KEITA FC 8C 19/12/2017 at 12:29

    From a+b=c+d

    => (a+b)2=(c+d)2

    =>ab=cd

    Consider (a+b)3=(c+d)3

    We have a3+3ab(a+b)+b3=c3+3cd+d3

    =>a3+b3=c3+d3

    Consider (a3+b3).(a+b)=(c3+d3).(c+d)

    => a4+ab(a2+b2)+b4=c4+cd(c2+d2)

    =>a4+b4=c4+d4

    We can infer this

    an+bn=cn+dn

    => (an+bn).(a+b)=(cn+dn).(c+d)

    => an+1+ab(an-1+bn-1)+bn+1=cn+1+cd(cn-1+dn-1)+dn+1

    =>an+1+bn+1=cn+1+dn+1

    So we have a2018+b2018=c2018+d2018

  • ...
    Fc Alan Walker 19/12/2017 at 12:41

    From a+b=c+d

    => (a+b)2=(c+d)2

    =>ab=cd

    Consider (a+b)3=(c+d)3

    We have a3+3ab(a+b)+b3=c3+3cd+d3

    =>a3+b3=c3+d3

    Consider (a3+b3).(a+b)=(c3+d3).(c+d)

    => a4+ab(a2+b2)+b4=c4+cd(c2+d2)

    =>a4+b4=c4+d4

    We can infer this

    an+bn=cn+dn

    => (an+bn).(a+b)=(cn+dn).(c+d)

    => an+1+ab(an-1+bn-1)+bn+1=cn+1+cd(cn-1+dn-1)+dn+1

    =>an+1+bn+1=cn+1+dn+1

    So we have a2018+b2018=c2018+d2018


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM