MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Fc Năng Lượng Hạt Nhân

15/12/2017 at 21:08
Answers
1
Follow

Shorten the following :

\(\dfrac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)

Prove that the above dependence does not depend on x, which means for every x and a .




    List of answers
  • ...
    KEITA FC 8C 15/12/2017 at 21:21

    \(=\dfrac{x^2+x^2a+a+a^2+a^2x^2+1}{x^2-x^2a-a+a^2+a^2x^2+1}\)

    \(=\dfrac{x^2\left(a^2+a+1\right)+\left(a^2+a+1\right)}{x^2\left(a^2-a+1\right)+\left(a^2-a+1\right)}\)

    \(=\dfrac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}\)

    \(=\dfrac{a^2+a+1}{a^2-a+1}\)

    To \(x^2+1\) other 0

    This proves that the given distribution does not depend on x .

    Comment form : \(a^2-a+1=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) so the breakdown \(\dfrac{a^2+a+1}{a^2-a+1}\) or \(\dfrac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\) means for every x and a .


Post your answer

Please help Fc Năng Lượng Hạt Nhân to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM