MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

13/12/2017 at 19:54
Answers
2
Follow

Given: \(\left\{{}\begin{matrix}x,y>0\\x+y=1\end{matrix}\right.\)

Find the Minimum of \(A=\dfrac{1}{x^2}+\dfrac{1}{y^2}\)




    List of answers
  • ...
    Kaya Renger Coordinator 13/12/2017 at 23:12

    Applying inequality AM-GM for two non-negative numbers , we have 

    \(x+y\ge2\sqrt{xy}\)

    => \(xy\le\dfrac{1}{4}\) 

    Analyze expression A 

    => \(A=\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{x^2+y^2}{x^2y^2}\ge\dfrac{2xy}{x^2y^2}=\dfrac{2}{xy}\ge\dfrac{2}{\dfrac{1}{4}}=8\)

    So MinA = 8

    Equation occurs when and only when \(x=y=\dfrac{1}{2}\)

    Selected by MathYouLike
  • ...
    Faded 28/01/2018 at 20:45

    Applying inequality AM-GM for two non-negative numbers , we have 

    x+y≥2√xy

    => xy≤14

    Analyze expression A 

    => A=1x2+1y2=x2+y2x2y2≥2xyx2y2=2xy≥214=8

    So MinA = 8

    Equation occurs when and only when x=y=12


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM