Nguyễn Thị Hải
10/12/2017 at 10:57-
Nguyễn Hưng Phát 11/12/2017 at 21:56
Apply extend Bunyakovsky inequality ,we have:
\(a^3+b^3+c^3\)\(=\dfrac{a^4}{a}+\dfrac{b^4}{b}+\dfrac{c^4}{c}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a+b+c}=\dfrac{81}{a+b+c}\) (1)
Other way:
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow27\ge\left(a+b+c\right)^2\)\(\Rightarrow a+b+c\le\sqrt{27}=3\sqrt{3}\) (2)
From (1) and (2)\(\Rightarrow a^3+b^3+c^3\ge\dfrac{81}{a+b+c}\ge\dfrac{81}{3\sqrt{3}}=9\sqrt{3}\)
\(\Rightarrow min_M=9\sqrt{3}\) when a=b=c=\(\sqrt{3}\) because a,b,c\(\ge-1\)
Selected by MathYouLike