MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nguyễn Thị Hải

10/12/2017 at 10:57
Answers
1
Follow

Give \(a;b;c\ge-1\) và \(a^2+b^2+c^2=9\).

Find Min \(M=a^3+b^3+c^3\)




    List of answers
  • ...
    Nguyễn Hưng Phát 11/12/2017 at 21:56

    Apply extend Bunyakovsky inequality ,we have:

    \(a^3+b^3+c^3\)\(=\dfrac{a^4}{a}+\dfrac{b^4}{b}+\dfrac{c^4}{c}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a+b+c}=\dfrac{81}{a+b+c}\)                                              (1)                                      

    Other way:

    \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow27\ge\left(a+b+c\right)^2\)\(\Rightarrow a+b+c\le\sqrt{27}=3\sqrt{3}\)                 (2)

    From (1) and (2)\(\Rightarrow a^3+b^3+c^3\ge\dfrac{81}{a+b+c}\ge\dfrac{81}{3\sqrt{3}}=9\sqrt{3}\)

    \(\Rightarrow min_M=9\sqrt{3}\) when a=b=c=\(\sqrt{3}\) because a,b,c\(\ge-1\)

    Selected by MathYouLike

Post your answer

Please help Nguyễn Thị Hải to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM