Fc Năng Lượng Hạt Nhân
04/12/2017 at 21:28-
Mons Trần 04/12/2017 at 21:39
You don't speak Vietnamese here.You must speak English
You are violating rules.
You should redress.Are you okayy..?
-
KEITA FC 8C 04/12/2017 at 21:40
Ta có :
\(\sqrt{a^2+ab+b^2}\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)\) với mọi a , b
Dấu = xảy ra khi và chỉ khi \(a=b>0\)
Thật vậy :
Với \(a+b< 0\) thì \(\dfrac{\sqrt{3}}{2}\)luôn thỏa mãn
Với \(a+b\ge0\) thì bình phương
Hai vế của \(\dfrac{\sqrt{3}}{2}\) ta có :
\(a^2+ab+b^2\ge\dfrac{3}{4}\left(a+b\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) luôn đúng
\(\Rightarrow\dfrac{\sqrt{3}}{2}\left(a+b\right)\) luôn đúng
Tương tự ta có :
\(\sqrt{b^2+bc+c^2}\ge\dfrac{\sqrt{3}}{2}\left(b+c\right)\)
\(\sqrt{c^2+ca+a^2}\ge\dfrac{\sqrt{3}}{2}\left(c+a\right)\)
\(\Rightarrow p\ge\sqrt{3}\left(a+b+c\right)\)
\(=9\sqrt{3}\)
Mặt khác a = b = c = 3 thì \(p=9\sqrt{3}\)
Vậy minP \(=9\sqrt{3}\)
-
Phan Văn Hiếu 09/12/2017 at 21:21
we have \(ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\sqrt{a^2+ab+b^2}=\sqrt{a^2+2ab+b^2-ab}\ge\sqrt{\left(a+b\right)^2-\dfrac{\left(a+b\right)^2}{4}}=\sqrt{\dfrac{3\left(a+b\right)^2}{4}}=\dfrac{\sqrt{3}\left(a+b\right)}{2}\)
similar \(\sqrt{b^2+bc+c^2}\ge\dfrac{\sqrt{3}\left(b+c\right)}{2}\)
\(\sqrt{c^2+ac+a^2}\ge\dfrac{\sqrt{3}\left(a+c\right)}{2}\)
\(p\ge\dfrac{\sqrt{3}\left(a+b\right)}{2}+\dfrac{\sqrt{3}\left(a+c\right)}{2}+\dfrac{\sqrt{3}\left(b+c\right)}{2}=\dfrac{\sqrt{3}}{2}.2\left(a+b+c\right)=\sqrt{3}.9=9\sqrt{3}\)
so max \(p=9\sqrt{3}\)