MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Cloud moderators

04/12/2017 at 09:11
Answers
1
Follow

In quadrilateral ABCD, m\(\angle\)C = m\(\angle\)D = 120 degrees, m\(\angle\)A = 90 degrees, BC = 8, CD = 4. What is the area of ABCD? Express your answer in simplest radical form. 
undefined




    List of answers
  • ...
    Dao Trong Luan Coordinator 04/12/2017 at 11:15

    Draw \(CH\perp AB\)

    Connected AC

    A B C D H

    \(\left\{{}\begin{matrix}DA\perp AB\\CH\perp AB\end{matrix}\right.\)=> DA // CH

    => \(\angle HCD+\angle ADC=180^o\) [2 angles in the same side]

    But \(\angle ADC=120^o\Rightarrow\angle HCD=60^o\Leftrightarrow\angle BCH=120^o-60^o=60^o\)

    \(\angle BCH=60^o\Rightarrow\angle HBC=90^o-60^o=30^o\)

    We have:

    tan \(\angle HBC=\dfrac{HC}{BC}\)

    \(\Rightarrow HC=tan30^o\cdot8=\dfrac{\sqrt{3}}{3}\cdot8=\dfrac{8\sqrt{3}}{3}\left(units\right)\)

    The same, we have:

    tan \(\angle HCB=\dfrac{HB}{BC}\)

    \(\Rightarrow HB=tan60^o\cdot8=\sqrt{3}\cdot8=8\sqrt{3}\left(units\right)\)

    \(\Rightarrow S_{BHC}=\dfrac{\dfrac{8\sqrt{3}}{3}\cdot8\sqrt{3}}{2}=32\left(units^2\right)\)

    Selected by MathYouLike

Post your answer

Please help Cloud to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM