Dao Trong Luan Coordinator
03/12/2017 at 10:06-
\(a^3+3a^2+5=5^b\Leftrightarrow a^2\left(a+3\right)+5=5^b\Leftrightarrow a^2.5^c+5=5^b\)
\(a\ge1\Rightarrow a^3+3a^2+5\ge1^3+3.1^2+5=9\Rightarrow5^b\ge9\Rightarrow b\ge2\)
Moreover : \(a+3\ge4\Rightarrow5^c\ge4\Rightarrow c\ge1\)
So, we can divide both sides by 5 : \(a^2.5^{c-1}+1=5^{b-1}\)
Since \(b-1\ge1;c-1\ge0\), in modulo 10, we have :
\(5^{b-1}\equiv5\Rightarrow a^2.5^{c-1}\equiv4\)
If \(c-1\ge1\) : \(5^{c-1}\equiv5\Rightarrow a^2.5^{c-1}\equiv0\) or \(a^2.5^{c-1}\equiv5\) (unsatisfied)
\(\Rightarrow c-1=0\Rightarrow c=1\Rightarrow a+3=5\Rightarrow a=2\Rightarrow5^b=25\Rightarrow b=2\)
Hence, a = 2 ; b = 2 ; c = 1
Selected by MathYouLike -
FA Liên Quân Garena 30/12/2017 at 21:46
a3+3a2+5=5b⇔a2(a+3)+5=5b⇔a2.5c+5=5b
a≥1⇒a3+3a2+5≥13+3.12+5=9⇒5b≥9⇒b≥2
Moreover : a+3≥4⇒5c≥4⇒c≥1
So, we can divide both sides by 5 : a2.5c−1+1=5b−1
Since b−1≥1;c−1≥0
, in modulo 10, we have :
5b−1≡5⇒a2.5c−1≡4
If c−1≥1
: 5c−1≡5⇒a2.5c−1≡0 or a2.5c−1≡5
(unsatisfied)
⇒c−1=0⇒c=1⇒a+3=5⇒a=2⇒5b=25⇒b=2
Hence, a = 2 ; b = 2 ; c = 1