MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

03/12/2017 at 10:06
Answers
2
Follow

Find 3 positive integer number a,b,c , know:

\(\left\{{}\begin{matrix}a^3+3a^2+5=5^b\\a+3=5^c\end{matrix}\right.\)




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 03/12/2017 at 17:31

    \(a^3+3a^2+5=5^b\Leftrightarrow a^2\left(a+3\right)+5=5^b\Leftrightarrow a^2.5^c+5=5^b\)

    \(a\ge1\Rightarrow a^3+3a^2+5\ge1^3+3.1^2+5=9\Rightarrow5^b\ge9\Rightarrow b\ge2\)

    Moreover : \(a+3\ge4\Rightarrow5^c\ge4\Rightarrow c\ge1\)

    So, we can divide both sides by 5 : \(a^2.5^{c-1}+1=5^{b-1}\)

    Since \(b-1\ge1;c-1\ge0\), in modulo 10, we have :

    \(5^{b-1}\equiv5\Rightarrow a^2.5^{c-1}\equiv4\)

    If \(c-1\ge1\) : \(5^{c-1}\equiv5\Rightarrow a^2.5^{c-1}\equiv0\) or \(a^2.5^{c-1}\equiv5\) (unsatisfied)

    \(\Rightarrow c-1=0\Rightarrow c=1\Rightarrow a+3=5\Rightarrow a=2\Rightarrow5^b=25\Rightarrow b=2\)

    Hence, a = 2 ; b = 2 ; c = 1

    Selected by MathYouLike
  • ...
    FA Liên Quân Garena 30/12/2017 at 21:46

    a3+3a2+5=5b⇔a2(a+3)+5=5b⇔a2.5c+5=5b

    a≥1⇒a3+3a2+5≥13+3.12+5=9⇒5b≥9⇒b≥2

    Moreover : a+3≥4⇒5c≥4⇒c≥1

    So, we can divide both sides by 5 : a2.5c−1+1=5b−1

    Since b−1≥1;c−1≥0

    , in modulo 10, we have :

    5b−1≡5⇒a2.5c−1≡4

    If c−1≥1

     : 5c−1≡5⇒a2.5c−1≡0 or a2.5c−1≡5

     (unsatisfied)

    ⇒c−1=0⇒c=1⇒a+3=5⇒a=2⇒5b=25⇒b=2

    Hence, a = 2 ; b = 2 ; c = 1


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM