MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

03/12/2017 at 10:01
Answers
3
Follow

Find max of \(A=\dfrac{3-4x}{x^2+1}\)




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 03/12/2017 at 17:11

    \(A=\dfrac{3-4x}{x^2+1}=\dfrac{4x^2+4-4x^2-4x-1}{x^2+1}=\dfrac{4\left(x^2+1\right)-\left(2x+1\right)^2}{x^2+1}\)

    \(=4-\dfrac{\left(2x+1\right)^2}{x^2+1}\le4\)

    The equality happens only when : \(2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

    Dao Trong Luan selected this answer.
  • ...
    Nguyễn Hưng Phát 03/12/2017 at 11:26

    We have:A-1=\(\dfrac{3-4x}{x^2+1}-1=\dfrac{3-4x-\left(x^2+1\right)}{x^2+1}=\dfrac{3-4x-x^2-1}{x^2+1}=\dfrac{-\left(x^2+4x-2\right)}{x^2+1}=\dfrac{-\left(x+2\right)^2+6}{x^2+1}=\dfrac{-\left(x+2\right)^2}{x^2+1}+\dfrac{6}{x^2+1}\) Because:\(\dfrac{-\left(x+2\right)^2}{x^2+1}\le0\) so A-1\(\le\dfrac{6}{x^2+1}\) 

    \(\Rightarrow\)maxA-1=\(\dfrac{6}{x^2+1}\)\(\Leftrightarrow x=-2\Rightarrow\)maxA-1=\(\dfrac{6}{5}\)\(\Rightarrow\)maxA=\(\dfrac{11}{5}\)

  • ...
    FA Liên Quân Garena 30/12/2017 at 21:47

    We have:A-1=3−4xx2+1−1=3−4x−(x2+1)x2+1=3−4x−x2−1x2+1=−(x2+4x−2)x2+1=−(x+2)2+6x2+1=−(x+2)2x2+1+6x2+1 Because:−(x+2)2x2+1≤0 so A-1≤6x2+1

    ⇒

    maxA-1=6x2+1⇔x=−2⇒maxA-1=65⇒maxA=115


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM