taylor swift
19/03/2017 at 14:59-
FA KAKALOTS 06/02/2018 at 12:37
Let m2 and n2 be a + 22 and a - 23 respectively. ( m > n > 0)
So, we have m2−n2=(a+22)−(a−23)
⇒(m−n)(m+n)=45=1.45=3.15=5.9
⋅
If m - n = 1 and m + n = 45; then m = 23 ; n = 22; so a=m2−22=n2+23=507
⋅
If m - n = 3 and m + n = 15; then m = 9 and n = 6, so a = 59.
⋅
If m - n = 5 and m + n = 9; then m = 7 and n = 2; so a = 27.
Ans : a∈{27;59;507}.
-
Dung Trần Thùy 19/03/2017 at 22:39
Let m2 and n2 be a + 22 and a - 23 respectively. ( m > n > 0)
So, we have \(m^2-n^2=\left(a+22\right)-\left(a-23\right)\)
\(\Rightarrow\left(m-n\right)\left(m+n\right)=45=1.45=3.15=5.9\)
\(\cdot\) If m - n = 1 and m + n = 45; then m = 23 ; n = 22; so \(a=m^2-22=n^2+23=507\)
\(\cdot\) If m - n = 3 and m + n = 15; then m = 9 and n = 6, so a = 59.
\(\cdot\) If m - n = 5 and m + n = 9; then m = 7 and n = 2; so a = 27.
Ans : \(a\in\left\{27;59;507\right\}.\)