MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Uchiha Sasuke

11/11/2017 at 20:03
Answers
5
Follow

Find the positive integer x such that
\(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)


interger


    List of answers
  • ...
    Dao Trong Luan Coordinator 11/11/2017 at 20:56

    For \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)

    => \(x^2-1;x^2-4;x^2-7;x^2-10\) have a positive and 3 negative or a nagative and 3 positive

    * If have a positive and 3 negative:

    => x2 - 1 > 0 > x2 - 4 > x2 - 7 > x2 - 10

    => x2 - 1 > 0 and x2 - 4 < 0

    => 1 < x2 < 4 => x2 can equal 2 or 3.

     But x is integer so x2 can't equal 2 or 3

    * If have a negative and 3 positive:

    => x2 - 1 > x2 - 4 > x2 - 7 > 0 > x2 - 10

    => x2 - 7 > 0 and x2 - 10 < 0

    => 7 < x2 < 10

    => x2 = 9 because x is integer

    => x = \(\pm3\)

    But x is the positive integer => x = 3

    Selected by MathYouLike
  • ...
    Nguyễn Hưng Phát 12/11/2017 at 22:16

    Equivalent disequations:\(\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)

    Put \(x^4-11x^2+10=t\)

    We have:t(t+18)<0

    TH1:\(\left\{{}\begin{matrix}t>0\\t+18< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t>0\\t< -18< 0\end{matrix}\right.\) (loại)

    TH2:\(\left\{{}\begin{matrix}t< 0\\t+18>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t< 0\\t>-18\end{matrix}\right.\)\(\Rightarrow t\in\left\{-17,-16,...........,-1\right\}\)

    It's easy here, you try it yourself......

  • ...
    Dao Trong Luan Coordinator 11/11/2017 at 21:06

    For \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-1\right)< 0\)

    => In this four numbers, have:

    \(\left[{}\begin{matrix}\text{a positive number and 3 negative numbers}\\\text{a negative number and 3 positive numbers}\end{matrix}\right.\)

    * If have a positive number and 3 negative numbers:

    => x2-1 > 0 > x2-4 > x2-7 > x2-10

    => x2 - 1 > 0 and x2 < 4

    => 1 < x2 < 4 => No number is satisfy

    * If have a negative number and 3 positive numbers:

    => x2-1 > x2-4 > x2-7 > 0 > x2-10

    => x2-7 > 0 and x2-10 < 0

    => 7 < x2 < 10

    => x2 = 9 because x is a positive integer <=> x2 is a positive integer too.

    => x = 3 because x is a positive integer


Post your answer

Please help Uchiha Sasuke to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM