MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

05/11/2017 at 10:54
Answers
1
Follow

Prove that : 4n + 15n - 10 \(⋮\) 9 , \(n\in N\)




    List of answers
  • ...
    Dao Trong Luan Coordinator 05/11/2017 at 19:26

    Put Sn = 4n + 15n - 10

    With n = 1, S1 = 41 + 15.1 - 10 = 9 ⋮ 9

    Suppose n = k \(\ge1\), so Sk = 4k + 15k - 10 ⋮ 9

    So we must prove that: Sk+1 ⋮ 9

    We have: Sk+1 = 4k+1 + 15(k+1) - 10

                             = 4(4k + 15k - 10) - 45k + 55 - 10

                             =  4Sk - 9(5k - 5)

    But Sk ⋮ 9 => 4Sk ⋮ 9. The other side, 9(5k - 5) ⋮ 9

    So Sk+1⋮ 9

    So 4n + 15n - 10 ⋮ 9

    Done

    Selected by MathYouLike

Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM