Summer Clouds moderators
04/11/2017 at 23:16-
We have: \(a=GCF\left(72,48\right)=24=2^3\cdot3\)
We have: \(b=GCF\left(108,144\right)=36=2^2\cdot3^2\)
So the least common multiple of a and b is: \(LCM\left(a,b\right)=LCM\left(24,36\right)=2^3\cdot3^2=8\cdot9=72\)
ANSWER: 72
Selected by MathYouLike -
Phạm Tuấn Đạt 05/11/2017 at 22:38
a=GCF(72;48)=24;b=GCF(108;144)=36a=GCF(72;48)=24;b=GCF(108;144)=36
LCM(a;b)=72
-
\(a=GCF\left(72;48\right)=24;b=GCF\left(108;144\right)=36\)
\(LCM\left(a;b\right)=72\)